What will the LHC discover or solve the mystery of the universe-beself

The large hadron collider will find what next? Or solving the riddle of the universe since 2013 after the closure of the Large Hadron Collider for a period of 2 years of maintenance and upgrade. By the time it restarted in 2015, the particle accelerator was running two times as fast as the energy before it was shut down. Sina Technology News Beijing on February 24th news, according to foreign media reports, the Large Hadron Collider in the French and Swiss border is the world’s largest scientific experiment equipment. Since the restart in 2015, the operation energy of the large hadron collider has been upgraded to 2 times the original, so each of its experiments has attracted worldwide attention. Physicists hope to use the device to obtain more unsolved mysteries in physics and even in the universe, such as new particles such as the Higgs boson. So what are the possible discoveries in the future of the LHC? The possible future discoveries were closed since 2013, and the LHC continued its maintenance and upgrade for 2 years. By the time it restarted in 2015, the particle accelerator was running two times as fast as the energy before it was shut down. At present, physicists are implementing a series of important and complex physics experiment, hope to be able to verify some of the major theoretical field of particle physics, such as supersymmetry. However, it seems unlikely that the theory of grand unification will be experimentally verified in the next three years. Whatever the possibility, the LHC has been working on these near-term or long-term goals. The so-called supersymmetric theory of 1. supersymmetric particles suggests that any particle that has been found so far has a heavier supersymmetric partner particle. If we can prove the existence of these particles, we can explain some of the difficulties in the present prediction. However, the exact evidence for the existence of supersymmetry has not been found so far. To prove this theory directly, it is necessary to produce and detect this kind of supersymmetric particles in the Large Hadron collider. At present, 2. graviton particle physics theory "standard model" may be successful, but it cannot describe the basic particle behavior of gravity. Some other theories hope to fill in the gap, the theory predicts the existence of a particle, the graviton, can be used to explain why other particles feel gravity. However, the sensitivity of the detector produces the energy required for graviton and detection of gravitons need, may have been beyond the scope of the LHC’s ability. But the LHC has room to work. 3. five quark particles already have some evidence that the Large Hadron Collider may have discovered a new particle – five quark particles. The so-called five quark particle is a particle made up of five smaller quark particles. In 2014, scientists had claimed that a four quark particle had been discovered. So now they think the particles should be five quark particles. 4. there is a big mystery in the modern theory of dark matter: that most of the material (85%) in the universe is gone. The existing physics theory can not explain this phenomenon at all. There’s a theory that these invisible materials are

大型强子对撞机接下来会发现什么?或解宇宙之谜   自2013年关闭后,大型强子对撞机进行了为期2年的维护和升级。到2015年重启时,这台粒子加速器运行能量已两倍于关闭前的能量。   新浪科技讯 北京时间2月24日消息,据国外媒体报道,位于法国与瑞士边境的大型强子对撞机是世界上最大的科学实验设备。自2015年重启以来,大型强子对撞机的运行能量已升级至原来的2倍,因此它的每一次实验都令世人倍加关注。物理学家希望利用该设备取得物理学领域乃至宇宙范围内的更多未解之谜,比如希格斯玻色子之类的新粒子等。那么,大型强子对撞机将来究竟会有哪些可能的发现呢?   未来可能的发现   自2013年关闭后,大型强子对撞机进行了为期2年的维护和升级。到2015年重启时,这台粒子加速器运行能量已两倍于关闭前的能量。目前,物理学家正在实施一系列复杂、重要的物理学实验,希望能够验证粒子物理学领域的一些重大理论,如超对称理论。不过,大统一理论在未来三年内得到实验验证似乎可能性很小。无论可能性如何,大型强子对撞机一直在向如下这些近期或长远目标努力。   1. 超对称粒子   所谓的超对称理论认为,迄今已发现的任何一种粒子都有一个更重的超对称伙伴粒子。如果能够证明这些粒子的存在,就可以解释目前预言中的某些难题。但是,至今未能发现超对称性存在的确切证据。要想直接证明这种理论,就需要在大型强子对撞机中制造并探测到这种超对称粒子。   2. 引力子   目前的粒子物理学理论“标准模型”也许是成功的,但是它无法描述基本粒子的引力行为。其它一些理论希望能够填补这种空白,这些理论预言存在一种粒子,即引力子,可以用来解释为什么其它粒子感觉到引力的作用。然而,产生这种引力子所需要的能量以及探测引力子所需要的探测器灵敏度,可能都已超出了大型强子对撞机的能力范围。不过,大型强子对撞机还有努力的空间。   3. 五夸克粒子   已经有一些证据可以证明大型强子对撞机可能已发现了一种新粒子–五夸克粒子。所谓的五夸克粒子就是一种由五个更小的夸克粒子组成的粒子。2014年,科学家曾经宣称已经发现了一个四夸克粒子。因此,现在他们认为此次所发现的粒子应该是五夸克粒子。   4. 暗物质   现代天文学理论存在一个大谜团:宇宙的大多数物质(85%)都“消失”了。现有的物理学理论根本无法解释这一现象。有一种理论认为,这些不可见的物质就是暗物质。然而,迄今没有任何人探测到这种暗物质。大型强子对撞机正在努力寻找一种被称为“弱相互作用大质量粒子”的新型粒子。虽然这种粒子目前仍然停留在理论中,但是如果能够探测到,就可以证明暗物质的存在,并对宇宙大多数物质消失现象给予最终解释。   5. 大统一理论   纵观历史,物理学上一些看起来独立的领域最终都被相互联系起来,并统一形成了一个个强大的新理论。如今,我们对物理学有了更为完整的理解。但是,物理学上仍然有一些重要理论,我们无法将它们统一协调起来。大型强子对撞机的一些发现成果或许会启发理论学家统一这些理论,甚至是所有理论。然而,即使是世界上最强大机器所实施的最复杂物理学实验,大统一理论都是一个长远目标。   新粒子的发现   大型强子对撞机是一条27公里长的环形隧道,位于法国与瑞士边境地面之下。高能粒子在大型强子对撞机中高速运行并相互对撞。这种撞击会产生新型粒子,但是这些新粒子存在的时间非常短。大型强子对撞机的粒子探测器会灵敏地探测每一种新粒子的信号,科学家们再根据探测数据进行研究。   自2013年关闭后,大型强子对撞机进行了为期2年的维护和升级。到2015年重启时,这台粒子加速器运行能量已两倍于关闭前的能量。根据爱因斯坦的质能方程(E=MC2),E代表能量,m代表质量,c代表光速,撞击能量越大,就有可能产生更重的粒子。大型强子对撞机的每一项探测成果,都将交给超级计算机网络处理。这种分析处理过程可能需要数月时间,直至确定希格斯玻色子之类粒子的发现。所有新发现的粒子都要经过这种严格的检验与分析。   目前,我们对宇宙的认识是远远不够的,现有的理论根本无法匹配我们所观测到的宇宙。因此,物理学家一直在努力,希望能够找到新粒子。发现新粒子主要有两种途径,一种方式是提高大型强子对撞机中质子的对撞能量。能量的提高就可能产生更重的粒子。第二种方式就是增加对撞次数,就可能获取更多的探测数据。通过对海量数据的分析,从中寻找任何罕见新粒子的微弱信号。   大型强子对撞机同时在尝试这两种方式,在提高能量的前提下,不断增加对撞实验次数。不过,科学家也不清楚答案究竟会在哪里,或者究竟哪一种新粒子的出现能够回答各种理论中的未解之谜。他们希望通过检测宇宙的任何构件的每一方面,最终能够找到答案所在。(彬彬)相关的主题文章: